

Shower Length

By Tom Nutt-Powell & Sergio Siani

Key Issue

Conserving resources

Stewardship Opportunity

Take a shorter shower

While some environmental stewardship opportunities involve changes in mechanical and/or electrical equipment, most involve changes in behavior. Stewardship is what we do. Cost is the consequence of our actions. Cost is counted in both \$s and pollution. Most behavior changes involve everyday things. This is really evident in the length of showers one takes.

Stewardship Opportunity #1 — Shorten Your Shower

It is reported that the average length of a shower is 10 minutes. What is the "cost" involved, in \$s and in CO2 emissions? Using the \$hower Cost Calculator (available at MIP&L's web site) answers that question. Cost will depend on (1) the fuel and (2) the equipment used to heat your domestic hot water ("DHW"). Here is the cost in \$s and CO2 emissions as of November 2007:

Fuel	Equipment	\$s/year	CO2/year
Gas	High efficiency	\$70.80	721
Gas	On-Demand	\$77.55	790
Gas	Tank	\$100.21	1,020
Oil	High efficiency	\$112.70	646
Oil	Tank	\$128.30	736
Electricity	On-Demand	\$203.58	1,712
Electricity	Tank	\$203.58	1,712

The details are on page 3, including how much you can save by cutting in half your 10-minute shower. Then spend the \$s you save by the 50% drop by buying GreenE to help offset the your remaining carbon footprint.

EES: Showering Page 1

Stewardship Opportunity #2 — Get a Low-Flow Showerhead

Showerheads are improving in terms of both quality and efficiency. The current U.S. standard of 2.5 gpm represents a dramatic water savings improvement over the fixtures that were sold in the 1970s. Some of those delivered up to 10 gpm; they averaged 4 to 6 gpm. A good location for buying all kinds of energy-saving products is the IPL-sponsored http://www.energyfederation.org/ipl/default.php.

MIP&L members and congregants get 10% discount!!! Enter the discount code shopipl

Here are two low-flow showerhead options

2 gpm (\$5±) Variable spray

1.5 gpm (\$26±) Design pressure 20>100 psi

And get low-flow aerators for faucets (0.5 gpm; \$2)

How Much Does Your Shower Cost?

Download the Shower Cost Calculator from MIP&L website: http://www.mipandl.org/MIPL_resources/MIPL_ShowerCostCalculatorTemplate.xls Do the calculations.

Then reduce the minutes and you'll see how much you will reduce cost and pollution.

Mass. Interfaith Power & Light

197 Herrick Road, Suite 22 Newton Centre, MA 02459

Phone: 617-244-0755

Email: MIPandL@MIPandL.org

www.MIPandL.org

EES: Showering Page 2

How Much Does Your

"Typical" 10 Minute \$hower

COST

April 2011 prices

#1	Fill in the >	Yellow Box	with how long you take in a shower
#2	Fill in the >	Pink Box	with how much you pay for your fuel type for heating hot water
#3	Go to the >	Green Box	that matches how domestic hot water is generated in your home for your cost in \$s and CO2
#4	Go to the >	Green Box	for how much you can save by a 50% reduction in length of your current length of shower

How many minutes do you spend in the shower? How much do you pay for ... \$1.50 \$/therm Then reduce the minutes and you'll see how much you will reduce cost and polution Oil \$3.89 \$/gallon Reducing time in the shower to 5 minutes is a 50% savings. \$0.169 \$/kWh Electricity

GAS High efficiency boiler & in-direct fired tank

BTU/Therm = 100,000 Efficiency = 92% 0.1176 50% savings Therms for one shower =\$ cost for one shower = \$0.18 \$0.09 CO2 per shower = 1.98 0.99 CO2 per year = 721 360.5 \$ cost for a year of showers = \$64.37 \$32.18

GAS On-Demand (no tank)

100,000	
84%	
0.1288	50% savings
\$0.19	\$0.10
2.16	1.08
790	394.8
\$70.50	\$35.25
	84% 0.1288 \$0.19 2.16 790

GAS

Direct fired tank

100,000	
65%	
0.1664	50% savings
\$0.25	\$0.12
2.80	1.40
1,020	510.2
\$91.10	\$45.55
	65% 0.1664 \$0.25 2.80 1,020

OIL High efficiency boiler & in-direct fired tank

BTU/gallon=	138,700	
Efficiency =	74%	
Oil gallons for one shower =	0.1054	50% savings
\$ cost for one shower =	\$0.41	\$0.20
CO2 per shower =	1.77	0.89
CO2 per year =	646	323.1
\$ cost for a year of showers =	\$149.62	\$74.81

OIL Direct fired tank

BTU/gallon=	138,700	
Efficiency =	65%	
Therms for one shower =	0.1200	50% savings
\$ cost for one shower =	\$0.47	\$0.23
CO2 per shower =	2.02	1.01
CO2 per year =	736	367.8
ost for a year of showers =	\$170.34	\$85.17

ELECTRICITY On-Demand (no tank)

one shower =	3.1691	50% savin
Efficiency =	100%	
BTU/kWh=	3,413	

Efficiency =	100%	
kWh for one shower =	3.1691	50% savings
\$ cost for one shower =	\$0.54	\$0.27
CO2 per shower =	4.69	2.35
CO2 per year =	1,712	856.0
\$ cost for a year of showers =	\$195.48	\$97.7 4

ELECTRICITY DIrect fired tank

BTU/kWh=	3,413
Efficiency =	100%

Efficiency =	100%	
kWh for one shower =	3.1691	50% savings
\$ cost for one shower =	\$0.54	\$0.27
CO2 per shower =	4.69	2.35
CO2 per year =	1,712	856.0
\$ cost for a year of showers =	\$195.48	\$97.74

Use your 50% \$avings for Renewable Energy.

Assumption	Value	Units
Mixed Shower Temp =	105.00	Deg F
CW Temp =	53.00	Deg F
Heat Capacity of Water =	1.00	BTU/Lb-Deg F
Density of Water =	8.32	Lb/Gallon
Flow rate of Shower Head =	2.50	Gallons Per Minut

It takes about 7 NE trees to offset 100 lbs of CO2

Use the MIP&L EES Briefs on
√ Boilers & Furnaces
√ Domestic Hot Water
$\sqrt{\text{Appliances}}$
for more ways to reduce your carbon footprint